Desingularization of First Order Linear Difference Systems with Rational Function Coefficients

نویسندگان

  • Moulay A. Barkatou
  • Maximilian Jaroschek
چکیده

It is well known that for a first order system of linear difference equationswith rational function coefficients, a solution that is holomorphic in some le‰ half plane can be analytically continued to a meromorphic solution in the whole complex plane. Œe poles stem from the singularities of the rational function coefficients of the system. Just as for differential equations, not all of these singularities necessarily lead to poles in solutions, as they might be what is called removable. In our work, we show how to detect and remove these singularities and further study the connection between poles of solutions and removable singularities. We describe two algorithms to (partially) desingularize a given difference system and present a characterization of removable singularities in terms of shi‰s of the original system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

Stability and numerical solution of time variant linear systems with delay in both the state and control

In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...

متن کامل

Integrability of planar polynomial differential systems through linear differential equations . ∗

In this work, we consider rational ordinary differential equations dy/dx = Q(x, y)/P (x, y), with Q(x, y) and P (x, y) coprime polynomials with real coefficients. We give a method to construct equations of this type for which a first integral can be expressed from two independent solutions of a second–order homogeneous linear differential equation. This first integral is, in general, given by a...

متن کامل

Factorization of Polynomials and GCD Computations for Finding Universal Denominators

We discuss the algorithms which, given a linear difference equation with rational function coefficients over a field k of characteristic 0, compute a polynomial U(x) ∈ k[x] (a universal denominator) such that the denominator of each of rational solutions (if exist) of the given equation divides U(x). We consider two types of such algorithms. One of them is based on constructing a set of irreduc...

متن کامل

Asymptotic Behaviour of a Non-commutative Rational Series with a Nonnegative Linear Representation

We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from differential cryptanalysis, using elementary tools from analysis and linear algebra, and more sophisticated tools from analytic number theory. We show that a probability distribution function describes the asymptotic behaviour of the rational series according to the length of words. As a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.01150  شماره 

صفحات  -

تاریخ انتشار 2018